Likelihood Ratio Tests

Recall the monotone likelihood ratio family.
Definition 1.1 A family $\mathfrak{F}=\{f(x, \theta): \theta \in \Theta\}$ is a monotone likelihood ratio family in the statistic T if $f\left(x, \theta_{0}\right) / f\left(x, \theta_{1}\right)$ is monotonically increasing in T for every $\theta_{0}>\theta_{1}$.

Remembering that power is a good thing, if we have two size α tests, the one with more power should be preferred.

Definition 1.2 A test φ which is size α and which satisfies $\mathrm{E}_{\theta}(\varphi(X)) \geq \mathrm{E}_{\theta}\left(\varphi^{*}(X)\right)$ for all $\theta \in \Theta-\omega$ (i.e. θ in the alternative) is called uniformly most powerful size α for $H_{0}: \theta \in \omega$ versus $H_{1}: \theta \in \Theta-\omega$.

For monotone likelihood ratio families, these UMP tests can be found using the following theorem.

Theorem 1.1 Consider $\mathfrak{F}=\{f(x, \theta): \theta \in \Theta\}$ a monotone likelihood ratio family in T, and the hypothesis $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta>\theta_{0}$. Then the uniformly most powerful test, φ, exists and is of the form

$$
\varphi(x)=\left\{\begin{array}{ll}
1 & T(x)>c_{\alpha} \tag{1}\\
\gamma_{\alpha} & T(x)=c_{\alpha} \\
0 & T(x)<c_{\alpha}
\end{array} \quad(\text { reject }) ~(\text { randomize })\right.
$$

where c_{α} and γ_{α} are chosen to give size α.
That this test is UMP can be seen via the following proof.
Proof 1.1 Apply Neyman-Pearson to $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta=\theta_{1}$ for $\theta_{1}>\theta_{0}$. Then the Neyman-Pearson lemma indicates that the most powerful size α test (for this simple versus simple test) is

$$
\varphi(x)=\left\{\begin{array}{ccc}
1 & x \ni f_{1}(x) / f_{0}(x) & >k_{\alpha} \tag{2}\\
\gamma_{\alpha} & & \\
0 & & <k_{\alpha}
\end{array}\right.
$$

But, f_{1} / f_{0} is monotonic in T, so $f_{1} / f_{0}>k_{\alpha}$ if and only if $T(x)>c_{\alpha}$ for some c_{α}. Now, c_{α} is chosen under H_{0} so that we get size α. So, the same test using c_{α} works for all $\theta_{1}>\theta_{0}$. Hence, $\varphi(X)$ is UMP for $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta>\theta_{0}$.

Example 1.1 Let $X_{1}, X_{2}, \ldots, X_{200} \stackrel{i i d}{\sim} N\left(\mu, \sigma_{0}^{2}\right)$. Test the hypotheses

$$
H_{0}: \mu=100 \text { versus } H_{1}: \mu>100
$$

Suppose that $\alpha=0.05$ and that $\sigma_{0}^{2}=2$. Then

$$
\begin{align*}
\frac{f\left(\mathbf{x}, \mu_{1}\right)}{f\left(\mathbf{x}, \mu_{0}\right)} & =\exp \left(-\frac{\sum\left(x_{i}-\mu_{1}\right)^{2}}{4}+\frac{\sum\left(x_{i}-\mu_{0}\right)^{2}}{4}\right) \tag{3}\\
& =\exp \left(\frac{\mu_{1}-\mu_{0}}{2} \sum x_{i}+\left(\mu_{0}^{2}-\mu_{1}^{2}\right) \frac{200}{4}\right) \tag{4}
\end{align*}
$$

for $\mu_{1}>\mu_{0}$ this is monotonic in $\sum X_{i}$ or $\bar{X}=\sum X_{i} / n$. So the UMP test rejects for large \bar{X}.

Now, we need c_{α} such that

$$
\begin{align*}
0.05 & =\alpha \tag{5}\\
& =\mathrm{P}\left(\bar{X}>c_{\alpha} \mid \mu=\mu_{0}\right) \tag{6}\\
& =\mathrm{P}\left(\frac{\bar{X}-100}{\sqrt{2} / \sqrt{200}}>\frac{c_{\alpha}-100}{\sqrt{2} / \sqrt{200}}\right) \tag{7}\\
& =\mathrm{P}\left(Z>\left(c_{\alpha}-100\right) 10\right) \tag{8}
\end{align*}
$$

So, $\left(c_{\alpha}-100\right) 10=1.645$ or $c_{\alpha}=100.1645$ and thus

$$
\begin{align*}
\varphi(\mathbf{x}) & = \begin{cases}1 & \bar{x}>100.1645 \\
0 & \text { else }\end{cases} \tag{9}\\
& = \begin{cases}1 & \sum_{i} x_{i}>20032.9 \\
0 & \text { else }\end{cases} \tag{10}
\end{align*}
$$

