Likelihood Ratio Tests

Recall the monotone likelihood ratio family.

Definition 1.1 A family $\mathfrak{F} = \{f(x,\theta) : \theta \in \Theta\}$ is a monotone likelihood ratio family in the statistic T if $f(x,\theta_0)/f(x,\theta_1)$ is monotonically increasing in T for every $\theta_0 > \theta_1$.

Remembering that power is a good thing, if we have two size α tests, the one with more power should be preferred.

Definition 1.2 A test φ which is size α and which satisfies $E_{\theta}(\varphi(X)) \geq E_{\theta}(\varphi^*(X))$ for all $\theta \in \Theta - \omega$ (i.e. θ in the alternative) is called **uniformly most powerful size** α for $H_0: \theta \in \omega$ versus $H_1: \theta \in \Theta - \omega$.

For monotone likelihood ratio families, these UMP tests can be found using the following theorem.

Theorem 1.1 Consider $\mathfrak{F} = \{f(x,\theta) : \theta \in \Theta\}$ a monotone likelihood ratio family in T, and the hypothesis $H_0 : \theta = \theta_0$ versus $H_1 : \theta > \theta_0$. Then the uniformly most powerful test, φ , exists and is of the form

$$\varphi(x) = \begin{cases} 1 & T(x) > c_{\alpha} & (reject) \\ \gamma_{\alpha} & T(x) = c_{\alpha} & (randomize) \\ 0 & T(x) < c_{\alpha} \end{cases}$$
(1)

where c_{α} and γ_{α} are chosen to give size α .

That this test is UMP can be seen via the following proof.

Proof 1.1 Apply Neyman-Pearson to $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ for $\theta_1 > \theta_0$. Then the Neyman-Pearson lemma indicates that the most powerful size α test (for this simple versus simple test) is

$$\varphi(x) = \begin{cases} 1 & x \ni f_1(x)/f_0(x) > k_\alpha \\ \gamma_\alpha & = k_\alpha \\ 0 & < k_\alpha \end{cases}$$
(2)

But, f_1/f_0 is monotonic in T, so $f_1/f_0 > k_\alpha$ if and only if $T(x) > c_\alpha$ for some c_α . Now, c_α is chosen under H_0 so that we get size α . So, the same test using c_α works for all $\theta_1 > \theta_0$. Hence, $\varphi(X)$ is UMP for $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$. **Example 1.1** Let $X_1, X_2, \ldots, X_{200} \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$. Test the hypotheses

 $H_0: \mu = 100 \ versus \ H_1: \mu > 100$

Suppose that $\alpha = 0.05$ and that $\sigma_0^2 = 2$. Then

$$\frac{f(\mathbf{x},\mu_1)}{f(\mathbf{x},\mu_0)} = \exp\left(-\frac{\sum(x_i-\mu_1)^2}{4} + \frac{\sum(x_i-\mu_0)^2}{4}\right)$$
(3)

$$= \exp\left(\frac{\mu_1 - \mu_0}{2} \sum x_i + (\mu_0^2 - \mu_1^2) \frac{200}{4}\right)$$
(4)

for $\mu_1 > \mu_0$ this is monotonic in $\sum X_i$ or $\overline{X} = \sum X_i/n$. So the UMP test rejects for large \overline{X} .

Now, we need c_{α} such that

$$0.05 = \alpha \tag{5}$$

$$= P\left(\overline{X} > c_{\alpha} | \mu = \mu_0\right) \tag{6}$$

$$= P\left(\frac{\overline{X} - 100}{\sqrt{2}/\sqrt{200}} > \frac{c_{\alpha} - 100}{\sqrt{2}/\sqrt{200}}\right)$$
(7)

$$= P(Z > (c_{\alpha} - 100)10)$$
(8)

So, $(c_{\alpha} - 100)10 = 1.645$ or $c_{\alpha} = 100.1645$ and thus

$$\varphi(\mathbf{x}) = \begin{cases} 1 & \overline{x} > 100.1645 \\ 0 & else \end{cases}$$
(9)

$$= \begin{cases} 1 & \sum x_i > 20032.9\\ 0 & else \end{cases}$$
(10)